Home / OCR / Arena

OCR Arena: Speed vs Quality

Human preference rankings from head-to-head battles. Lower latency + higher ELO = better.

1700 1600 1500 1400 1300
ELO Score (Quality)
Gemini 3 Preview
ELO: 1688 | 39.2s
Opus 4.5 (Low)
ELO: 1647 | 18.5s
Gemini 2.5 Pro
ELO: 1645 | 46.6s
Opus 4.5 (Medium)
ELO: 1618 | 18.9s
GPT-5.2 (Medium)
ELO: 1595 | 35.9s
GPT-5.1 (Medium)
ELO: 1574 | 18.8s
Sonnet 4.5
ELO: 1571 | 21s
Gemini 2.5 Flash
ELO: 1549 | 14.5s
GPT-5.2 (None)
ELO: 1538 | 15s
GPT-5.1 (Low)
ELO: 1527 | 8.7s
GPT-5 (Low)
ELO: 1467 | 15.8s
GPT-5 (Medium)
ELO: 1466 | 35s
Iris
ELO: 1465 | 9.8s
Qwen3-VL-8B
ELO: 1446 | 7.2s
dots.ocr
ELO: 1438 | 3.6s
Nanonets2-3B
ELO: 1376 | 4.9s
olmOCR 2
ELO: 1324 | 12.7s
DeepSeek OCR
ELO: 1302 | 3.5s
0s 10s 20s 30s 40s 50s
Latency per Page (Speed)
Open Source
Closed/API

Key Insights

Best Quality
Gemini 3 Preview
ELO 1688 | 39.2s

Highest accuracy but slowest. Best for batch processing.

Best Balance
Opus 4.5 (Low)
ELO 1647 | 18.5s

Excellent quality at reasonable speed. Good default choice.

Best Open Source
Qwen3-VL-8B
ELO 1446 | 7.2s

Best quality among OSS. Chandra fine-tunes this model.

Fastest
DeepSeek OCR
ELO 1302 | 3.5s

Fastest model but lower accuracy. Good for high-volume.

Full Rankings

Rank Model Type ELO Win Rate Latency Battles
#1 Gemini 3 Preview API 1688 72.2% 39.2s 1,609
#2 Opus 4.5 (Low) API 1647 67.7% 18.5s 959
#3 Gemini 2.5 Pro API 1645 72.1% 46.6s 1,588
#4 Opus 4.5 (Medium) API 1618 69.7% 18.9s 890
#5 GPT-5.2 (Medium) API 1595 67.2% 35.9s 137
#6 GPT-5.1 (Medium) API 1574 60.3% 18.8s 1,589
#7 Sonnet 4.5 API 1571 49% 21s 989
#8 Gemini 2.5 Flash API 1549 56.7% 14.5s 1,674
#9 GPT-5.2 (None) API 1538 62.2% 15s 148
#10 GPT-5.1 (Low) API 1527 55.9% 8.7s 1,683
#11 GPT-5 (Low) API 1467 44.4% 15.8s 1,587
#12 GPT-5 (Medium) API 1466 46.1% 35s 1,587
#13 Iris OSS 1465 36.8% 9.8s 163
#14 Qwen3-VL-8B OSS 1446 40.8% 7.2s 1,338
#15 dots.ocr OSS 1438 36.5% 3.6s 1,371
#16 Nanonets2-3B OSS 1376 34.1% 4.9s 943
#17 olmOCR 2 OSS 1324 29.1% 12.7s 1,639
#18 DeepSeek OCR OSS 1302 19.9% 3.5s 1,598

About OCR Arena

OCR Arena uses human preference rankings through head-to-head battles. Users compare OCR outputs from two anonymous models and select the better result. ELO scores are calculated from these battles, similar to chess rankings.

Note: Latency measurements are from the Arena API, not local inference. Self-hosted open source models can be significantly faster on dedicated hardware.