Disease Classification2019en

CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels

224,316 chest radiographs from 65,240 patients with 14 pathology labels. Includes uncertainty labels and expert radiologist annotations for validation set. The gold standard for chest X-ray classification.

Metrics:auroc, accuracy, sensitivity, specificity
Paper / WebsiteDownload
Current State of the Art

CheXpert AUC Maximizer

Stanford

93

auroc

auroc Progress Over Time

Showing 4 breakthroughs from Jan 2019 to Dec 2025

85.887.889.891.793.6Jan 2019Apr 2021Aug 2023Dec 2025aurocDate

Key Milestones

Jan 2019
DenseNet-121 (Chest X-ray)

Baseline DenseNet-121. Trained on CheXpert training set.

86.5
Oct 2021
GLoRIA

Global-Local Representations. Zero-shot evaluation.

88.2
+2.0%
Apr 2022
BioViL

Microsoft's biomedical vision-language model.

89.1
+1.0%
Dec 2025
CheXpert AUC MaximizerCurrent SOTA

Mean AUC across 5 competition pathologies. Competition-winning ensemble.

93.0
+4.4%
Total Improvement
7.5%
Time Span
7y 1m
Breakthroughs
4
Current SOTA
93.0

Top Models Performance Comparison

Top 7 models ranked by auroc

auroc1CheXpert AUC Maximizer93.0100.0%2BioViL89.195.8%3CheXzero88.695.3%4GLoRIA88.294.8%5MedCLIP87.894.4%6TorchXRayVision87.494.0%7DenseNet-121 (Chest X-ray)86.593.0%0%25%50%75%100%% of best
Best Score
93.0
Top Model
CheXpert AUC Maxi...
Models Compared
7
Score Range
6.5

aurocPrimary

#ModelScorePaper / CodeDate
1
CheXpert AUC MaximizerOpen Source
Stanford
93Dec 2025
2
BioViLOpen Source
Microsoft
89.1Dec 2025
3
CheXzeroOpen Source
Harvard/MIT
88.6Dec 2025
4
GLoRIAOpen Source
Stanford
88.2Dec 2025
5
MedCLIPOpen Source
Research
87.8Dec 2025
6
TorchXRayVisionOpen Source
Cohen Lab
87.4Dec 2025
7
DenseNet-121 (Chest X-ray)Open Source
Research
86.5Dec 2025

Other Disease Classification Datasets